Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics.
نویسندگان
چکیده
We have applied the perturbation theory for calculating the piezoelectric potential distribution in a nanowire (NW) as pushed by a lateral force at the tip. The analytical solution given under the first-order approximation produces a result that is within 6% from the full numerically calculated result using the finite element method. The calculation shows that the piezoelectric potential in the NW almost does not depend on the z-coordinate along the NW unless very close to the two ends, meaning that the NW can be approximately taken as a "parallel plated capacitor". This is entirely consistent to the model established for nanopiezotronics, in which the potential drop across the nanowire serves as the gate voltage for the piezoelectric field effect transistor. The maximum potential at the surface of the NW is directly proportional to the lateral displacement of the NW and inversely proportional to the cube of its length-to-diameter aspect ratio. The magnitude of piezoelectric potential for a NW of diameter 50 nm and length 600 nm is approximately 0.3 V. This voltage is much larger than the thermal voltage ( approximately 25 mV) and is high enough to drive the metal-semiconductor Schottky diode at the interface between atomic force microscope tip and the ZnO NW, as assumed in our original mechanism for the nanogenerators.
منابع مشابه
Investigating Output Voltage and Mechanical Stability of a Piezoelectric Nanogenerator Based on ZnO Nanowire
The output of a piezoelectric nanogenerator based on ZnO nanowire is largely affected by the shape of nanowire. In order to obtain mechanically stable nanogenerator with high performance, the investigation of mechanical and electrical characteristics related to the nanowires and materials used in nanogenerators are of great interest and significance. This paper presents the various behavior of ...
متن کاملInvestigating Output Voltage and Mechanical Stability of a Piezoelectric Nanogenerator Based on ZnO Nanowire
The output of a piezoelectric nanogenerator based on ZnO nanowire is largely affected by the shape of nanowire. In order to obtain mechanically stable nanogenerator with high performance, the investigation of mechanical and electrical characteristics related to the nanowires and materials used in nanogenerators are of great interest and significance. This paper presents the various behavior of ...
متن کاملA Flexible Sandwich Nanogenerator for Harvesting Piezoelectric Potential from Single Crystalline Zinc Oxide Nanowires
High-quality single crystalline zinc oxide nanowires were grown on silver and gold coated plastic substrates for the fabrication of a sandwich-like nanogenerator using the aqueous chemical growth method. The applicability of this configuration as a nanogenerator is demonstrated by studying the harvested electrical output under mechanical deformation. Three different configurations were fabricat...
متن کاملEffect of Electric Potential Distribution on Electromechanical Behavior of a Piezoelectrically Sandwiched Micro-Beam
The paper deals with the mechanical behavior of a micro-beam bonded with two piezoelectric layers. The micro-beam is suspended over a fixed substrate and undergoes the both piezoelectric and electrostatic actuation. The piezoelectric layers are poled through the thickness and equipped with surface electrodes. The equation governing the micro-beam deflection under electrostatic pressure is deriv...
متن کاملMechanical Response of a Piezoelectrically Sandwiched Nano-Beam Based on the Non-Local Theory
This article deals with the mechanical analysis of a fixed-fixed nano-beam based on nonlocal elasticity theory. The nano-beam is sandwiched with two piezoelectric layers through it’s upper and lower sides. The electromechanical coupled equations governing the problem are derived based nonlocal theory considering to Euler-Bernoulli beam assumptions and based on the nonlocal piezoelectricity acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 7 8 شماره
صفحات -
تاریخ انتشار 2007